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Phase Determination Using Non-crystallographic Symmetry 
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(Received 9 September 1966) 

A three-dimensional hypothetical structure containing four crystallographically independent but 
chemically identical molecules in space group P 1 has been solved. Each molecule contained ten carbon 
atoms separated by distances greater than 1.2/~. The solution of the phases required only a knowledge 
of the structure amplitudes and the relative orientations and positions of the molecules. 

1. Introduction 

In a paper by Main & Rossmann (1966) (hereafter MR) 
there was described a method of phase determination 
which depended upon having chemically identical mol- 
ecules in different crystallographic environments. 
Equating the electron densities of such molecules 
places restriction on the phases which are expressed 
by equation (10) of MR. 

g + ~  N 

- E IF~I exp{i~h} X IF~,I exp{i~} V h=-~o n=l 

Gn~on exp{2ni(p. S n - h .  S)} (1) 

where IF~,I, ~ ,  IFnl and c~n are the structure amplitudes 
and their phases at the reciprocal lattice points p and 
h in either the same or different crystals. Each molecule 
is enclosed in an envelope of volume U, the centres 
of the N molecular envelopes in the 'p' crystal being 
at Sn(n = 1,2... N), while S is the centre of a molecular 
envelope in the 'h' crystal. The function Gnpn is the 
magnitude of the Fourier transform of the molecular 
envelope which is given both in magnitude and phase 
by 

Gh~n{exp iQh~n} 

= I exp{2ni(p. [ C n l - h .  [C])x}dx, (2) 
d U 

where [C~] is the rotation matrix describing the orien- 
tation of the nth molecule in crystal 'p' and [C] is the 
rotation matrix corresponding to the molecule centred 
on S in crystal 'h'. 

MR showed that, using these equations in a one- 
dimensional case, the phases c~ and ah could be deter- 
mined with sufficient accuracy for the structure to be 
recognized in the resulting Fourier synthesis. This paper 
describes the method of phase determination used here 
and by MR, as well as the application of the technique 
to the solution of a hypothetical three-dimensional 
structure in the space group P 1. 

2. Method of phase determination 

Because of the nature of the function Ghpn, the largest 
terms on the right hand side of equation (1) will tend 

to have [h] ~ [p] or, more specifically, h and p will be 
such that the vector (p. [Cn] - h .  [C]) is small. Initially, 
the only known phase will be C~o(=2n), so that the 
first phases to be determined will be those for which 
IPJ is small as these will have the largest interactions 
with Fo. Next, equations with ]p[ a little larger are used 
since these will have large interactions with those 
phases previously determined. The equations are there- 
fore arranged in increasing order of their Bragg angle 
and knowledge of the phases is gradually extended 
outwards in reciprocal space. This is similar in outline 
to the method of Rossmann & Blow (1963). 

The actual process of phase determination is to take 
one new phase, c~, on the edge of the known part of 
reciprocal space and find its 'best' value by a search 
procedure. This is done by choosing an equation with 
~ on the left hand side and summing the right hand 
side over all known values of ~k. Arbitrary values of 
~v at say 5 ° intervals are substituted into the equation 
and the discrepancy between the two sides is calculated 
for each value of ~p. This is repeated for each equation 
which contains c~ explicitly on the left hand side and 
the sum of all the discrepancies for each angle is com- 
puted. That value of ~ which gives the lowest total 
discrepancy is considered to be the best present esti- 
mate of the phase, subject to the error introduced by 
the lack of knowledge or inaccuracy of the phases c~h. 
In the event that h and p refer to the same crystal, 
terms involving c~ may occur also on the right hand 
side, that is, those terms for which h = + p. This proce- 
dure is similar to that described by Rossmann & Blow 
(1964). 

As estimates of more phases become known, phases 
determined earlier may now be redetermined with more 
accuracy. The determination of a batch of phases is 
therefore followed by a refinement of all known phases 
before further phase determination takes place. The 
refinement consists simply of substituting the present 
estimate of the phases in the right hand sides of the 
equations and performing the vector summation. The 
argument of each resultant is then taken as the new 
estimate of the phase angle appearing on the left hand 
side of the equation. Whenever the same phase appears 
explicitly on the left hand side of more than one equa- 
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tion, the argument of the vector sum of all the right 
hand sides is taken as the new estimate. The new set 
of phases is only accepted, however, if it reduces the 
residual of the equations as defined by MR. 

That this process is one of refinement can be seen 
by examining its real space equivalent. By referring to 
the derivation of the equations by MR it can be seen 
that any one equation represents the structure factor 
F~ calculated from the assumption that all the mol- 
ecules in crystal 'p' are identical with that centred on 
S in crystal 'h'. There will be approximately one such 
equation for each crystallographically independent 
molecule, so taking the vector average of the right 
hand side sums of these equations is the same as cal- 
culating structure factors from an electron density 
which is the average over all the independent mol- 
ecules. It is this averaging process which produces the 
refinement, but since there is nothing in the procedure 
which forces the residual to decrease, it will rise again 
after several cycles and begin to oscillate. 

3. Application to a trial structure 

Because the equations (1) are non-linear, there im- 
mediately arose the problem of how to solve them and 
whether the solution would be unique. As a preliminary 
answer to these questions, the equations were applied 
to a variety of one-dimensional problems and were 
found to be successful (MR). Recently, a more satis- 
factory test of the method has been completed in which 

a hypothetical structure in the space group P1 was 
solved. The structure (Fig. 1) was made up of four 
identical molecules arranged in different orientations 
in the unit cell (a= 11.8, b=  11.1, c=6.8 ,~, a = f l = 7 =  
90.0°), each molecule consisting of ten equal carbon 
atoms separated by distances greater than 1.2 A. The 
size of the molecule is immaterial as far as the method 
is concerned but, in order to attain atomic resolution 
with a minimum amount of work, the 10-atom mol- 
ecule was chosen. The molecular envelope was chosen 
to be a sphere of radius 3.4 A and, in order to avoid 
errors due to atoms spilling over into the wrong enve- 
lope, the molecules were given a larger than normal 
separation. This resulted in the calculated density of 
the crystal being 0.90 g.cm -3 and in this respect the 
crystal was rather ideal. After calculating structure fac- 
tors to 1.0A resolution, the equations were set up 
using only the structure amplitudes and a knowledge 
of the relative positions and orientations of the mol- 
ecules. In all, there were 1838 unique reflexions in the 
1.0/~ limiting sphere but only the 1113 largest were 
used in the calculations. The magnitude of Gh~on was 
assumed to be negligible for arguments greater than 
2~ x 1.6 and only the 60 largest terms were considered 
in each equation. (A previous attempt at solving the 
structure, using 2~z x 1.1 as the maximum argument of 
Ghpn and 40 terms in each equation, proved to be 
only partially successful.) 

Putting the correct phases into the equations and 
calculating the residual produced the results shown in 
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Fig. 1. Projections of the hypothetical structure onto the ab face of the unit cell. The unit cell contains four identical molecules in 
different orientations in the space group P1. Each molecule contains ten carbon atoms numbered 1-10. 
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Table 1. The overall residual was 22.7%, but  doubtless 
this could be decreased by accepting larger arguments 
of  Gh~n and including more terms in the equations. 
The average discrepancy in angle between the left and 
right hand sides of  the equations was only about  10 °, 
however. 

Table 1. Residuals obtained on substituting 
the correct phases into equations 

The residual R is defined as the sum of the magnitude of the 
lack of closure vectors of each equation divided by the sum of 
the magnitude of the left hand sides. The error As is the mean 
difference in angle between the two sides of the equation. 

Resolution range R As 
c o -  1"8 A 18"8 % 9"4 ° 
1 "8-1 "4 22"7 9"5 
1"4-- 1"0 26"0 10"7 

The method of  phase determinat ion outl ined in § 2 
was used, and when the calculations were terminated 
the average error in the 1113 phases determined was 
13 °. At  this point  the phases were still refining to more 
accurate values, but  there seemed no need to pursue 
the calculations further as the structure was obviously 
solved and refinement was rather slow. A plot  of  error 
in phase angle against sin 0 is shown in Fig.2. The 
lower curve shows the errors at the terminat ion of  the 
calculations and the upper curve shows the errors at 
the stage where the phase determinat ion had pro- 
gressed to 1.35 A resolution. Immediately after the 
1.35/~ stage the accuracy of  the determined phases 
increased dramatically.  Presumably this was because a 
large number  of atoms suddenly became resolved, 
changing the features of  the electron density quite 
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Fig.2. Quality of phase determination as a function of resolution. The crosses show accuracy of phase determination using all 
equations up to a resolution 1.35 A. An increase of resolution to 1.0 A gave a dramatic improvement in phase determination 
as shown by the circles. 
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Fig. 3. Comparison of the three-dimensional electron density maps at 1.0 A resolution viewed down the c axis. The map on 
the left has been computed with the correct phases, whereas the map on the right is based on the phases determined by 
the solution of the molecular replacement equations. 
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radically and allowing the residual of the equations to 
fall into a deep minimum. 

The electron density calculated from the 1113 deter- 
mined phases and the corresponding structure ampli- 
tudes, projected onto the ab face, is shown in Fig.3. 
The true electron density calculated from all 1838 re- 
flexions in the 1.0 A sphere and the correct phases is 
also shown. All the features of the correct structure 
are clearly discernible in the determined s t ruc tu re -  
all the atoms are at least partially resolved, the vast 
majority being fully resolved, and no atom lies more 
than 0.15.A away from its correct position, most of 
them being within 0.10 A. The largest undesirable fea- 
tures in the determined structure are regions of negative 
electron density (some as low as - 1.2 e./~ -3) between 
the molecules and outside of the molecular envelopes. 

4 .  D i s c u s s i o n  

An average error of only 13 ° in the phases of over 
1000 reflexions may be attributed to the fact that the 
relative orientations and positions of all the molecules 
were known exactly, the molecular envelopes could be 
placed accurately and there was no experimental error 
in the structure amplitudes. In addition, there were 
four independent molecules, which is probably more 
than sufficient. The one-dimensional examples quoted 
by MR suggest that with only two independent mol- 
ecules, the phase determination is likely to be less reli- 
able and may even be quite random at high resolution.* 

A number of questions remain unanswered by this 
trial of the molecular replacement method. It is not 
yet known what effect experimental error will have on 
the ability of the equations to determine accurate 
phases, although experiments with one-dimensional 
structures show that a small amount of error will 
have very little effect (MR). Errors in the placement1" 
or shape:[: of the molecular envelopes will have an ef- 

* Since this paper was submitted, the author has shown 
that, using the techniques described here, phase determination 
with only two independent molecules does become random at 
high resolution, though not before useful structural informa- 
tion has been obtained. 

t The order of magnitude of the error involved may be 
obtained as follows. Let us assume that the orientation error 
may be corrected by a rotation of 50 about an axis a distance 
r from the reference point Sn within the nth molecule. This 
corrects Sn to Sn + 6Sn, where JSn = r. J0 and the argument of 
the corresponding coefficient in the equation will be changed 
by 2zrp. JSn radians. If we assume the magnitudes of all the 
coefficients with the same h are equal then the total error in- 
volved in the phase determined by that equation (i.e. 0~p) is 
2z~p..S, JSn radians. The value of J0 may be estimated from 

n 

the rotation function and r will be approximately the distance 
between the non-crystallographic rotation axis and the centre 
of the molecule. 

:1: A satisfactory envelope can be chosen for the monomer 
in R3 insulin from packing and other considerations. This 
envelope can be further refined from initial poor electron 
density maps. The degree of accuracy required in the first 
guess is, however, unknown and will undoubtedly vary from 
structure to structure. 

fect on the phase determination though, again, the 
extent of this effect has not been investigated. In the 
one-dimensional structures reported by MR the posi- 
tions of the molecular envelopes were successfully re- 
fined by least-squares methods during phase determina- 
tion, but in three dimensions this becomes an unwieldy 
computing problem and has not yet been programmed. 

The application of the method described in this paper 
has been limited to the case of chemically identical 
but crystallographically independent molecules within 
the same crystal. Additional problems may exist, how- 
ever, when the molecules are in different crystals. In 
the latter case, the structure factors F~ and Fn in equa- 
tions (1) belong to different crystals, whereas in the 
problem treated in this paper they correspond to the 
same crystal. 

The example given in this paper also assumes a 
knowledge of the absolute scale of the structure ampli- 
tudes. This is implied in the use of the F(000) term 
to determine some of the early phases. Furthermore, 
if this method is to be applied to a protein, we should 
consider the space outside the molecular envelopes to 
be filled uniformly by electron density representing the 
liquid of crystallization. As will be shown, these two 
factors are closely related. 

Let us assume that all Fh's have been placed on a 
roughly absolute scale. Although it is possible to cal- 
culate Fn(000) from the total number of electrons in 
the cell, nevertheless, this value should be adjusted to 
be k .  Fh(000) in order to bring it more accurately onto 
the same scale as the other structure amplitudes. Let 
Q8 be the average electron density of liquid between 
the molecular envelopes. We may now see that 

Fp = Z 0(Xn) exp{2zHp, xn}dxn 
n = l  U 

+ I Qs exp{2zcip, x}dx 
i.e. '~(v-Ntr) 

F~ = S 0(xn) exp{2~rip, xn}dxn 
n = l  U 

+ I Qs exp{2zcip, x}dx 
d V 

- Z 0s exp{21rip, xn}dxn 
n = l  U 

N i F ~  = Z [0(Xn)-Qs] exp{2rcip, xn}dxn 
n = l  U 

+ I Qs exp{2~ip, x}dx.  
v 

The last term is zero unless p is zero, when this term 
is equal to Vos. Hence in all equations, apart from the 
Fp(000) equation, we simply replace 0(x) by [Q(x)-Qs], 
which is equivalent to subtracting VOs from k .  Fh(000). 
The equations therefore remain in exactly the same 
form apart from the interactions with Fh(000). 

We may rewrite the interactions with the Fh(000) 
term as [k(U/V)Fh(O00)-Uos]re ~ when Ip150, or by 
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k(U/V)Fn(O00) when IPl=0. Here re t~ represents the 
sum over n in equation (1). The constant quantity 
[k(U/V)Fh(O00)-UQs] will appear in every equation 
except when IPl=0, and may therefore l:e estimated 
by averaging the lack of closure of each equation. Also 
k ( 1 -  U/V)Fn(O00) may be found from the F~(000) 
equation. Hence k and 0s can be determined, given 
reasonable initial estimates of these quantities. Since 
the size of the interaction re n' decreases as Ipl increases, 
the effect of salt concentration or an inaccurate know- 
ledge of the absolute scale becomes rapidly less signi- 
ficant as we go out in reciprocal space. 
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was supported by N.I.H. grant GM 10704-03 and by 
N.S.F. grant GB 02905. 

References 
MAIN, P. & ROSSMANN, M. G. (1966). Acta Cryst. 21, 67. 
ROSSMANN, M. G. & BLOW, D. M. (1963). Acta Cryst. 16, 39. 
ROSSMANN, M. G. & BLOW, D. M. (1964). Acta Cryst. 17, 

1474. 

Acta Cryst. (1967). 23, 54 

L e a s t - S q u a r e s  W e i g h t i n g  S c h e m e s  for  D i f f r a c t o m e t e r  - Co l l ec ted  D a t a  

BY R. C. G. KILLEAN 

Department of  Physics, The University, St. Andrews, Scotland 

(Received 7 October 1966 and in revised form 2 March 1967) 

An analysis is made of various diffractometer techniques for obtaining data, and expressions are ob- 
tained for the weighting functions that may be used in subsequent least-squares refinement. It is shown 
that for a constant-time diffractometer experiment the weighting function is independent of the mag- 
nitude of the counts obtained and dependent on the diffractometer geometry. The results for the con- 
stant-count diffractometer experiment are compared. 

Introduction 

The most accurate set of parameters that can be ob- 
tained by the least-squares technique of minimizing the 
function 

R =  2: w(h)lAOa)l 2 
h 

is when w(h) is the reciprocal of the variance of IA(h)l. 
The two forms of IA(h)] which have been most used 
in refining crystal structures are 

Izl l(h)l  = llFo(h)l - IF~(h)l l 
and 

Izfz(h) l  = I IFo (h ) l  z -  IF¢Oa)12l • 

If the standard deviation of each ]lFo(h)l-lFcOa)[ I is 
small in comparison with IFo(h)l then 

where 

and 

4lFoOa)12w2Oa): wl(h) 

R I =  ~ wl(h)lA,(h)l z 
h 

g z =  S wz(h)ldzO1)l  z . 
h 

It is often assumed that the value of w(h) is depen- 
dent only on the statistical errors in the experimentally 

observed structure factor, the non-random errors such 
as those associated with inaccurate instrument setting 
or the scattering factors making an unknown, and as- 
sumed negligible contribution to the standard devia- 
tion of IA(h)l. This assumption can be shown to be 
valid provided 

27 w(h)lAOa)12- - m -  n ,  

where m is the number of structure factors included 
in the summation, n is the number of variables and 
w(h) are the weights on the absolute scale for the equa- 
tion being minimized (Computing Methods in Crystal- 
lography, 1965). 

It is possible to perform at least two different types 
of diffractometer experiment. An experiment may be 
performed in which an integrated count is obtained 
for each reflexion over a constant time and in some 
instruments such as the linear diffractometer of Arndt 
and Philips there is, owing to the present construction 
of the instrument, no option but to use this technique. 
Alternatively, with more versatile instruments, either 
this technique or a constant count technique in which 
the intensity is proportional to the inverse of the time 
taken to achieve this constant count may be used 
(Lonsdale, 1948). 


